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Abstract. The nature of buckling and the quantitative calculation of  different parameters which are involved on 
the load carrying capacity of columns is the aim of this project. Current design methodologies for columns in 
compression or a combined action of it with bending, assume failure occurs when the column buckles about the 
minor axis of its cross section, without paying considerable attention on any imperfections, which may arise 
either from out of the column’s straightness or from deflections due to the bending moments developed on the 
joints, either the columns are considered as independent members or as a part of a rigid jointed steel frame. The 
target of this project is to develop and investigate a theoretical model, where all sources of imperfections are 
involved, so that this model could be used at a subsequent stage to investigate the biaxial buckling. A number of 
relevant concepts and calculations is built along with a systematic study of all kinds of possible imperfections 
concerning the uniaxial buckling, with respect to an upper and lower bound to the collapse load.. 

1 INTRODUCTION  
The behavior of structural members in compression and bending is a major area of structural engineering 

research world wide. The aim of this research has always been to enable engineers to design safe and efficient 
structures and to achieve a better understanding of the underlying principles which governs the behavior of such 
members. 

1.1 Methods of structural analysis    
Three main categories of structural analysis methods have been used by engineers to analyse struts and indeed 

other types of structural members. 
a. Linear elastic analysis, where a linear relationship is assumed to exist between the load and 

displacements everywhere in the structure. This method provides accurate predictions of behavior of structures 
not subjected to destabilizing effects related to either member or overall structure instability.  

b. Non linear elastic analysis, when the effects of member or overall structure instability are to be taken into 
account. The relationship between load and displacements is no longer linear.  

c. Plastic analysis, where, an analysis of the configuration of the structure or the stress distribution in a 
section at failure is carried out and used to predict the load carrying capacity of the structure or the member 
under consideration. 

1.2 Historical background 
Van Musschenbroek [1] published the first paper concerned with the strength of axially loaded members in 

1729. He observed from experiments conducted by himself that the strength of a "long" axially loaded strut is 
inversely proportional to the square of its length. No analytical relationship was established at the time. 

Euler [2] published his paper in 1759 in which he presented an analysis of a concentrically loaded, perfectly 
straight elastic strut. His analysis was based on the assumption that an originally straight column would remain 
straight until the load reaches a certain critical value after which deformations take place and the column 
becomes unstable. An analysis of the structure in its slightly deformed configuration, based on the solution to 
Bernoulli's equation 
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gives the value of the critical load as  
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where Pc is the Euler critical load and K is a constant which depends on the boundary conditions. 
In 1807 Young [3] stated that an initially bent strut will experience lateral deformation from the onset of loading 

regardless of how small the load might be. He concluded that irregularities that appear in experiments could be 
attributed to the presence of unavoidable initial out of straightness, material non homogeneity and loading 
eccentricity. His work constitute the first acknowledgement of the effects various imperfections have on the strength 
of columns. 

 The French engineer Considère [4] presented in 1889 the ‘Reduced Modulus Theory’ in which he analyzed the 
column on the assumption that it remains straight until the stress exceeds the limit of proportionality, after which the 
column starts to bend. He reasoned that the resulting curvature would reduce the strain in the concave side of the 
column and increase it in the convex side. He then suggested that if the stress in the column exceeds the limit of 
proportionality, the elastic modulus E in the Euler equation should be replaced with a reduced modulus Er having a 
value somewhere between the elastic modulus and the tangent modulus Et , i.e. 

tr EEE ≤≤  (3) 

In the same year 1889, Engesser [5] presented a similar line of thought when he proposed a Tangent Modulus 
Theory based on the assumption that, the stress in the column can reach a certain limit before the onset of lateral 
deformations, and that when this is the case, the elastic modulus should be replaced with the tangent modulus.  

Both of the reduced modulus theory and the tangent modulus theory are examples of non linear elastic 
analysis whilst the Euler theory is based on linear elastic analysis. Furthermore, all three theories fail to 
acknowledge the effects of imperfections on the stability of struts. 

In 1886 Professor Ayrton [6] presented a joint paper with Perry in which they published the results of their 
investigation on the effects of imperfections on column buckling. Their work is regarded by many as the most 
rational approach to the analysis of real columns behavior. They assumed that the total deflection ξ in a strut 
with pinned ends, can be represented by an Equivalent Initial Imperfection ξ0, having a sine form 
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Using this initial bow, they were able to derive an analytic relationship between the buckling load Pb, the 
Euler critical load PE and the equivalent initial deflection. The Ayrton – Perry equation is  

ρEbbEby PPPPPP =−− ))((  , (5) 

where  ρ is a non dimensional parameter given by  

Z
A

0ξρ = . (6) 

They were also able to relate the total equivalent imperfection to central deflection of the column by the equation 
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where  δ  is the measured central deflection. 

Eq. (5) enabled the imperfection effects to be quantified explicitly for the first time  whilst (7) enabled the 
direct measurement of the imperfection parameter from laboratory experiments. The Ayrton – Perry equation is 
the basis of the column design curves in BS 449 and BS 5950.     

2 NOTATION 
E  Young’s modulus. 
M  Bending moment. 
P  Applied load. 
PΕ  Euler critical load. 
Pci  Euler critical load at the ith mode. 
Py  Squash load. 
Pfh  Load at first hinge. 
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Pb  Buckling load. 
Pfy  Load corresponding to the first yield. 
ρ  Imperfection parameter. 
ξo  Total equivalent imperfection. 
A  Cross sectional area. 
Z Plastic modulus of the section. 
I Second moment of area. 
c  Spring constant. 
i  indicate the mode i.e 1,2,3... 
Φ  Characteristic shape function. 
Le  Effective length. 
w Central deflection 
wi  Maximum deflection at the ith mode. 
wo  Amplitude factor associated with geometrical imperfections 
wp Amplitude factor associated with proportional loading imperfections. 
wn Amplitude factor associated with non proportional loading imperfections. 
σm  Maximum stress on the cross section.  
mp  Moment induced by the proportional loading. 
mn  Moment induced by the non-proportional loading. 
α  Curvature function. 

3 THEORETICAL BACKGROUND 
In this part the Elastic critical analysis and the Imperfection approach will be explored in some detail. These 

two theories have been chosen because of their relevance to the theoretical model that will be developed in the 
coming paragraphs. 

3.1  Elastic critical analysis of struts. Eigenvalue & Eigenvector problem 
A perfectly straight column, restrained at both ends, with no want of homogeneity or locked stresses is shown 

in Fig. 1. The column is acted upon by a load P applied at the centroid of its section. As a result of this load, the 
column is deflected as shown in the figure. 

 

 
Figure 1: A  perfectly straight column analysis. 

 
The differential equation  of  equilibrium and compatibility of the column is 
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Eq. (8) is a homogeneous linear differential equation with a general solution 
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where   
EI
Pk =  . (10) 

The constants A1 to A4 can be calculated from the four boundary conditions related to the support conditions at 
both ends of the column. The mathematical formulation of  the boundary conditions yields a set of four simultaneous 
linear equations in the four constants. These equations, in a matrix notation take the form 

[f(k)]·[A] = 0 . (11) 

For an arbitrary value of the load Pci, i.e. {ki}, Eq. (11) is satisfied only when A1 = A2 = A3 = A4 = 0,  
indicating that the column remains straight. If a deflected configuration of the column is to be found, then the 
determinant of the coefficient matrix ∆[f(k)] must vanish. This is an Eigenvalue problem which gives an infinite 
number of solutions, k1, k2, … k∞, corresponding to an infinite number of critical loads  Pc1, Pc2, … Pc∞, where 

2
ici kEIP = . (12) 

The constants A1 to A4  can now be obtained by substituting ki in Eq. (11). Since the coefficients matrix is now 
singular, an explicit solution for the constants A1 to A4 is not possible and only the Eigenvectors can be obtained. 
This implies that three of the constants can be expressed in terms of the fourth, and the general solution to Eq. 
(8) is 

[ ] ,)cos()sin()( iiiiiii CxBxkAxkwxw +++=  (13) 

where iw  is an arbitrary constant and  Αi, Bi, Ci  are known values. 

3.1.1  Solution of the Eigenvalue problem 
For columns with simple end conditions, an analytic solution of the Eigenvalue problem can be obtained. The 

critical load and the deflected shape of a column with both ends pinned, i.e. for 
L
iki
π

= , will be: 
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Similarly, a column with fixed ends, for 
L
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π2

= , will have the solution: 
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Analytic solutions are not always feasible for columns with more complicated end conditions. For such 
columns numerical solutions are more appropriate.  

As an illustrative example, let us consider the column shown in Fig. 1, assuming  that both ends have 
rotational restraints with spring constants c1 and c2. Eq. (11) becomes 
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The Eigenvalues of Eq. (16) can be obtained by a computer routine that searches for successive values of k at 
which the determinant ∆[f(k)] vanishes. The program is based on the following simple algorithm: 

a. Initially a small value of  k = ko is assumed. 
b. The determinant ∆[f(k)] is then evaluated. 
c. If the absolute value of the determinant is less than the required accuracy, then k0 is an Eigenvalue to the 

determinant; if not continue at step (d) below 
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d. Increment of the value k  to a  kkk δ+= 01 , where  δk  is a very small given increment, and new evaluation 
of the determinant. 

e. If the value of the determinant changes its sign, then put  k1΄=ko-δk΄ where  δk΄= δk/2 and repeat steps (c) 
through to (e) until convergence to zero is achieved. 

f. If no change of sign is observed in (e) then put k=k1 and repeat steps (c) to (e) until a solution is obtained. 
g. Start the routine at step (a) with an initial value of k slightly greater than the previous solution to obtain 

the next Eigenvalue. 

3.1.2  Mode shapes & characteristic functions 

Eq. (13) is indeterminate as to magnitude because iw  is still an arbitrary constant, but definite as to shape, 
since  Αi, Bi, Ci  are known. It can be written as 

)()( xwxw iii Φ= , (17) 

where the function 

iiiiii CxBxkAxkx +++=Φ )cos()sin()(  (18) 

is the so called characteristic shape function of the ith critical mode. 
The above critical modes can be calculated directly from Eq. (11) 

3.1.3  Properties of mode shapes  

3.1.3.1  Harman's principle 
It has been, shown [7] that the buckled shape of a column with any boundary conditions is a sine curve, 

provided that an appropriate set of Cartesian coordinates is employed (Harman’s principle). 

 
 

Figure 2: The concept of Effective Length 
 

In the column of Fig. 2, points  F and D are points of contraflexure and the resultant moment is zero. If we 
choose the X axis to pass through F and D with the origin at F, the segment F-D is essentially a column with 
pinned ends of length Le. If the angle Θ is small, then the load on the shorter column F-D is equal to Pc. By 
correlating  the elastic critical load of the column in Fig. 2 with the Euler load of a pin-ended column, we can 
consider the column in the figure as simply supported, having a length Le. This result asserts a physical meaning 
of the effective length, as the distance between two adjacent points of contraflexure. The critical load can be 
written as  
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3.1.3.2  Modal shapes for columns with symmetrical end conditions 
Symmetry of end conditions can be assumed for columns in intermediate floors in multi-story framed 

structures and for any controlled experimental testing where identical end supports, clamps or spring supports 
are provided. This case is of particular importance to this project since the experimental model adopted had 
symmetrical end conditions. 

Fig. 3 shows the first three critical mode shapes of a column with symmetrical end conditions. 
 

 
 

Figure 3: Symmetric Column Eigenvectors 
 
From Harman's Principle, the buckled shape of the column is a sine curve, )sin(0 XAW γ= , where the 

distance between two points of contraflexure is the effective length Lei . This gives a value for eiLπγ = . The 
general solution to the equilibrium equation in terms of the local coordinates (X,W), corresponding to Eq. (13) is 

[ ]DCXXBXAXW +++= )cos()sin()( γγ  . (20) 

If we express this equation in terms of the global system (x,w) and substitute for γ, noting that 
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The constants  B, C and D  can be calculated from the conditions 
0=Φi  for   x = 0  and  x = L  
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Applying these boundary conditions yields 
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Eq. (23) enables the bending moment at any point x to be calculated when the column has buckled elastically 
in its ith  mode, since 
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where Pci and wi are the critical load and amplitude factor of mode i. 
Eq. (23) has three terms, the first is a sine curve, the second term represents a rotation from one system of 

coordinate to the other, and the third term a translation between the two abscissas. 

3.1.3.3  Orthognality of mode shapes 
The mode shapes of section 3.1.3. satisfy the so called orthognality relations 
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where Φi and Φj are two different characteristic functions associated with two different critical loads. A further 
relation exists for each mode and is given by 
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It can be shown [8] that Φi and Φj form a complete set of orthogonal functions. The deflected shape of a 
column can then be written as a converging series, 

∑ Φ=
∞

=1
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i
ii xwxw , (28) 

where wi is an amplitude factor associated with mode i . 

3.2  Imperfection analysis 

3.2.1  Sources of imperfections 
In practical situations, perfect columns never exist. The presence of initial out of straightness, material non 

homogeneity, residual stresses, deflection arising from loading of other parts of the structure or eccentric 
loading, should be expected and allowed for by the designer. In addition ,the manufacturing process of hot rolled 
sections, often leads to stresses being locked in the section due to non uniform rate of cooling. 

 The combined effect of all the factors mentioned above is referred to by the term imperfections. In 
general, Imperfections can be classified into two main categories, geometric imperfections, and loading 
imperfections.  Loading imperfection can further be classified into proportional and non proportional loading 
imperfections. Geometric imperfections encompass the effects of out of straightness, material defects and 
residual stresses. Proportional loading, refers to loads which are proportional to the axial load on the column 
whilst a non proportional loading is independent of the axial load. 
3.2.2  Geometric imperfections 

Fig. 4 shows a column with initial deflection wo(x). An axial load P is acting on the column. As a result of the 
application of the axial load, the deflection is increased by an amount w(x). 

The imperfection can be expressed in terms of a converging series of the characteristic functions Φi(x) as 
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where o
iw  is an unknown amplitude factor termed the modal geometric imperfection. 

It should be noted, that in the original Ayrton – Perry equation, the imperfections were assumed to take the 
form of a half-sine curve. This is the shape of the characteristic function for a column with pinned ends, buckling 
in its first mode (Eq. 14). In 1932, Southwell [9], showed that for a column with any arbitrary end conditions, the 
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first mode of buckling has the principal contribution to the imperfection function (29). The differential equation 
of equilibrium (8) for the column in Fig. 4 is 

0)()()(
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 − xPwxwxwEI tivoivt . (30) 

Substituting for wo(x) and w(x) from Eqs (29) and (28) respectively into (30), 
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Since Pci and Φi(x) satisfy the Euler Eq. (8), we can write 
 

 
Figure 4: Geometrical Imperfections 
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Substituting )(xiv
iΦ from (32) into (31), 
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Multiplying Eq. (28) by Φj(x), integrating over the whole length, and using the orthgonality relations of 
paragraph 3.1.3.3 we can prove that Eq. (33) holds for each mode separately, i.e 
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where wi
t is the amplitude factor of the total deflection associated with mode i. 

The amplitude factor for non linear deflection wi due to the axial load is given by 

o
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3.2.3 Proportional loading imperfections 
The general case of proportional loading imperfection, is that, of a beam column acted upon by a lateral load 

and subjected to end moments Ma and Mb. It is assumed here that all loads are proportional to the axial load on 
the column. The column is shown in Fig. 5. 

If wp(x) is the deflection due to proportional loading (without the contribution of axial load), it can be 
expressed it in terms of an infinite series of the characteristic functions, as 
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The differential equation of equilibrium prior to the application of axial load is 

)()( xqwEI ivp = . (37) 

After the application of axial load, the column takes its final configuration. The differential equation of 
equilibrium becomes 

)()()( '' xqxPwxEIw tt iv

=+ . (38) 

Combining Eq. (36) and (37), results in 

0')'(])()[( =+− tivpivt wPwwEI . (39) 

 
Figure 5: Loading Imperfections. 

 
Eq. (39) is identical to the equilibrium differential Eq. (30) for the geometrical imperfections, with wp 

substituted for wo. It follows that the relations between the total deflection, the deflection due to the axial load 
and the non proportional loading imperfections are similar to those in section (3.2.2), namely 
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Similar equations can be derived for the case of non-proportional loading imperfections wn. It can be seen that 
the equations relating the amplitude factors of imperfections arising from loading and geometry are identical. It 
follows that, when the three classes of imperfections, mentioned in section (3.2.1), are present, a generalized 
equation can be formulated as 
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The total deflection of the column at any point becomes 
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and the non-linear deflection due to the application of axial load is 
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Substituting for w(x) from (41) into (24), we obtain an expression for the bending moment in the column as 
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where  )()( '' xEIwxm pp −=  and )()( '' xEIwxm nn −=  
are linear moments obtained by linear elastic analysis of the whole structure of which the column is a part. It is 
assumed here that the geometrical imperfections are stress free. The parameter ξi is a representation of the Total 
Equivalent Imperfection. The concept of a total equivalent imperfection parameter that accounts for 
imperfections resulting from ALL sources was first developed at University College London in 1993. 

4 CONCLUSIONS 
In this paper which is the first part of a research dealing with the theoretical investigation of a rational 

approach to the study of Biaxial Buckling Model, the conclusions that can be derived are: 
• The imperfection approach to the column design buckling is the only rational method that can be used to 

analyze and design real columns. 
• Availability of cheap, fast and efficient computer programs suggest alternative approaches to column 

design, with less emphasis on empirical formulae and more emphasis on rational thinking. 

5 REFERENCES 
1. Van Musschenbroek, P. (1729): “Introductio ad Cohaerentiam Corporum Firmorum”. 

2. Euler, L. (1759): “Sur la force des columnes” Mémoires de l’ Académie de Berlin. 

3. Young, T. (1807) : “A course of lectures on normal philosophy and the mechanical arts”, Vol. 1, 135-156 and Vol. 2, 46-49. 

4.  Considère, A. (1889): “Résistance des pièces comprimées”, Congrès Int. des procédés de construction, Vol. 
35, 371. 

5. Engesser, F. (1889) : “Über die Knickfestigkeit gerader Stäbe“ Zeitschrift für Architectur und Ingenieurwesen, 
Vol. 35, 455. 

6. Ayrton, W.E, Perry, J. (1886):  “On Struts”, The Engineer, pp. 464-513. 

7. Lokkas, P. (1996): ‘A consistent approach to the buckling design analysis of rigid jointed steel-frames subject 
to sidesway’, PhD thesis, University College London. 

8. Ariaratnam, S.T., (1961): “The Southwell method for predicting critical loads of elastic structures” Quart. 
Journal Mech. and Appl. Maths., Vol. 14, part 2, pp 137-153. 

9. Southwell, R.V. (1912): “The strength of struts”, Engineering, Vol. 94, pp 249-250. 

 


